Per K. Jakobsen, Valentin V. Lychagin

Quantizations in a category of relations

(Lobachevskii Journal of Mathematics, Vol.17, pp.61 - 145)

In this paper we develops a categorical theory of relations and use this formulation to define the notion of quantization for relations. Categories of relations are defined in the context of symmetric monoidal categories. They are shown to be symmetric monoidal categories in their own right and are found to be isomorphic to certain categories of A-A bicomodules. Properties of relations are defined in terms of the symmetric monoidal structure. Equivalence relations are shown to be commutative monoids in the category of relations. Quantization in our view is a property of functors between monoidal categories. This notion of quantization induce a deformation of all algebraic structures in the category, in particular the ones defining properties of relations like transitivity and symmetry.



DVI format ( 355 Kb), ZIP-ed DVI format ( 95 Kb),

ZIP-ed PostScript format ( 327 Kb), ZIP-ed PDF format (358 Kb )

MathML Format